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In cortical microcircuits, ongoing activity patterns are combined with 
new inputs to perform many complex neural computations, includ-
ing evidence accumulation during decision-making1,2. To understand 
how ongoing activity is combined with external inputs, considera-
ble focus has been placed on the posterior parietal cortex (PPC)3,4, 
which is thought to be necessary for visual decision-making tasks in 
rodents5–8. Previous work has emphasized models in which evidence 
accumulation occurs as a winner-take-all competition between neu-
ronal activity patterns associated with different decisions2. This view 
predicts that, as evidence is accumulated, activity converges to one 
of several attractor states, each associated with a different decision. 
Winner-take-all dynamics have commonly been implemented as a 
highly structured competition between distinct recurrently connected 
pools of neurons with mutual inhibition across pools9,10. Predictions 
of these models, including long-lasting firing rate changes in homo-
geneous pools of individual neurons, have been supported by some 
experimental data3,4,11. However, recent work showing the preva-
lence of time-varying activity patterns in neuronal populations8,12–15  
provides initial suggestions of potential alternatives. For example,  
alternative implementations of winner-take-all competitions  
could also be possible, such as competitions between sequences  
of population activity. Or, entirely different algorithms for evidence  
accumulation might be present that do not require winner- 
take-all mechanisms.

Here we expanded the study of evidence accumulation in two ways. 
First, previous work has often emphasized independent recordings 
from selected subsets of individual neurons, typically summarized as 
averages across trials and cells. However, because animals make deci-
sions on single trials using populations of neurons, we developed new 
experimental and computational methods to reveal structure in the 
moment-to-moment changes in population activity. Second, because 
models proposing mechanisms other than winner-take-all competitions  

have not emerged, we not only compared our data with winner- 
take-all dynamics but also took an exploratory approach aimed 
at uncovering results that might motivate new conceptual models 
for evidence accumulation. The starting point for our conceptual  
framework was our previous work in the mouse PPC in which neu-
ronal activity was described as a trajectory through time-varying 
population activity patterns8.

We found that the PPC had long-timescale dynamics in the form 
of orderly transitions between transient and largely different patterns 
of population activity. As a result, the representation of new inputs 
depended both on the identity of the input and the near-past activity 
patterns in the population. PPC activity never reset but rather func-
tioned as a continuous record of recent events. In addition, multiple 
task-relevant features were represented simultaneously such that 
individual task features (for example, choice) did not converge to 
single activity patterns but instead were represented across trials by 
many different activity patterns. Our results motivate a new model in 
which a winner-take-all competition between distinct pools of neu-
rons would not be necessary. Rather, evidence accumulation may 
emerge from general, long-timescale dynamical properties, which 
would naturally form a history of the sequence of past events and 
thus create a short-term memory from which information, such as 
accumulated evidence, could be read out.

RESULTS
We developed a navigation-based evidence accumulation task in 
which a head-restrained mouse ran down a virtual-reality T-maze. 
The mouse was presented with six visual cues that could each 
appear on the left or the right wall at fixed locations (Fig. 1a,b and 
Supplementary Fig. 1; see Online Methods). To receive a reward, 
the mouse had to turn toward the direction that had more cues. Task 
difficulty was modulated by varying the net evidence, defined as the 
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We studied how the posterior parietal cortex combines new information with ongoing activity dynamics as mice accumulate 
evidence during a virtual navigation task. Using new methods to analyze population activity on single trials, we found that activity 
transitioned rapidly between different sets of active neurons. Each event in a trial, whether an evidence cue or a behavioral 
choice, caused seconds-long modifications to the probabilities that govern how one activity pattern transitions to the next, 
forming a short-term memory. A sequence of evidence cues triggered a chain of these modifications resulting in a signal for 
accumulated evidence. Multiple distinguishable activity patterns were possible for the same accumulated evidence because 
representations of ongoing events were influenced by previous within- and across-trial events. Therefore, evidence accumulation 
need not require the explicit competition between groups of neurons, as in winner-take-all models, but could instead emerge 
implicitly from general dynamical properties that instantiate short-term memory. 
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difference between the number of left and right cues (six total cues per 
trial). Mice performed the task with high accuracy by accumulating 
multiple pieces of evidence per trial, with a bias toward earlier seg-
ments (Fig. 1c and Supplementary Fig. 2; see Online Methods).

Distributed population representations of choice- and net 
evidence-related information
We first examined the distribution of activity patterns in individual 
neurons. We used calcium imaging to measure the activity of ~350 
neurons simultaneously in layer 2/3 of the PPC and estimated spike 
counts using deconvolution of the fluorescence traces16 (Online 
Methods; Supplementary Fig. 3 and Supplementary Table 1). 
Consistent with our previous work, most neurons were transiently 
active for less than 10% of the trial on average, and different neu-
rons were active at different points in the trial, such that across 
the population, activity tiled the full trial duration8 (Fig. 2a,b and 
Supplementary Figs. 4 and 5a,b). To test for differences in activity 
between trials with different choices and net evidence, we used a sup-
port vector machine (SVM) to predict choice on the basis of a single 
cell’s activity and a support vector regression (SVR) model to predict 
net evidence from a single cell’s activity (Online Methods). Some neu-
rons had a statistically significant choice classification accuracy, and 
some neurons had a significant relationship between the actual net 
evidence and the net evidence predicted from their activity (choice 
29.4%, net evidence 22.7%; 5% expected by chance; Fig. 2c,d). When 
we plotted the mean activity patterns for the significantly choice-
selective neurons, we identified choice-specific sequences of activity8 
(Supplementary Fig. 4c,d).

We next considered the entire population of neurons to determine 
whether task-relevant information was present only in the fraction 
of cells that had high selectivity or whether neurons that did not have 
statistically significant selectivity might contribute small amounts 
of information to a population code. The population activity (con-
catenated activity of all individual neurons) contained information 
about the choice and net evidence on single trials, as revealed using 
a SVM classifier for choice and a SVR model to predict net evidence 
(Fig. 2e,f). Information about choice and net evidence could not be 
explained only by behavioral differences between trials of different  
choices and net evidence, such as differences in running patterns 
in the maze (Supplementary Fig. 5e–h and Online Methods, 
“Contribution of behavioral variability to neuronal activity results”). 
We examined the distribution of information within the population 
by applying the population activity classifiers for choice and net  
evidence to increasingly larger subsets of neurons, beginning 
with neurons with the lowest individual classification accuracy.  
The accuracy of both classifiers increased with the incorporation 
of neurons that individually represented choice and net evidence 

poorly (Fig. 2g,h). Using the 40% least selective neurons, we were 
able to predict the mouse’s choice with ~75% accuracy (Fig. 2g,  
Supplementary Fig. 5j and Online Methods). These results sug-
gest a population representation in which information is distributed  
across heterogeneous and variable neurons5,17–22.

Clustering-based methods for analyzing population activity 
dynamics on single trials
Given that neuronal activity was in large part heterogeneous across 
neurons and variable between trials and that task-relevant information 
was distributed across neurons, we focused on how the population  
activity pattern changed from moment to moment. Because methods 
to analyze moment-to-moment transitions between transient popula-
tion activity patterns have not been commonly used previously, we 
developed a new analysis framework. We defined the population 
activity pattern within a given time period as a vector of each neuron’s 
estimated spike count. We considered the population activity to be a 
trajectory involving transitions from one activity pattern to another. 
To facilitate the analysis and visualization of transitions between pat-
terns, we reduced the dimensionality of the population activity using 
a clustering algorithm to group similar population activity patterns 
(Fig. 3a and Online Methods).

Specifically, we determined the number of clusters using the affin-
ity propagation clustering algorithm23. Our results were consistent 
across a wide range of cluster numbers and affinity propagation  
settings (Supplementary Fig. 6j and Online Methods). Clustering 
was performed independently for ten epochs in the trial. For each 
epoch, the estimated spike count on each of m trials for each of  
n simultaneously imaged neurons was calculated, resulting in m points 
in an n-dimensional space (Fig. 3a). We clustered these m points such 
that each cluster corresponded to a different set of trials with similar 
population activity patterns at a given epoch. For visualization, each 
cluster was represented as a circular node with area proportional to 
the number of trials in the cluster (Fig. 3a–d and Supplementary  
Fig. 6e). Transitions between clusters in adjacent epochs were marked 
as lines with thickness proportional to the transition probability  
(Fig. 3b–d and Online Methods).

Single trials could therefore be described as an activity trajectory  
defined by the sequence of clusters visited from epoch to epoch  
(Fig. 3b–d). These cluster-space trajectories are conceptually identi-
cal to trajectories that have previously been described using principal 
component analysis and other methods; the only difference is in the 
dimensionality reduction algorithm used5,8,19,24–26. Activity patterns 
reflecting important task-relevant features, including choice and net 
evidence, were apparent in the cluster space, even though clustering  
was performed on neuronal activity alone without any informa-
tion about behavioral parameters (Fig. 3b–d and Supplementary  
Fig. 6a–d). For choice, for example, different paths through clusters 
emerged for left- and right-choice trials, which is a visualization of 
choice-specific activity trajectories8 (Fig. 3b–d).

Before exploring population dynamics in the cluster space, we 
sought to gain an intuition on how neuronal activity patterns related 
to the clusters. We visualized the relationship between neuronal 
activity and clusters by calculating for each pair of trials the cor-
relation between their population activity patterns at a given epoch. 
We then sorted the matrix of trial–trial correlation coefficients by 
the trials that were clustered together (Fig. 3e–g). This visualiza-
tion revealed that clustering identified structure in the trial–trial 
activity pattern correlations and showed that clusters varied over 
a wide distribution in how similar they were to one another.  
As expected by the transient activity we observed in individual  
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neurons (Fig. 2a,b and Supplementary Figs. 4 and 5a,b), the activ-
ity patterns in clusters at one epoch were largely different from the 
activity patterns observed in clusters at the next epoch (Fig. 3h). 
Consistently, when we clustered activity patterns from all epochs 
together, rather than for single epochs individually, such that the 
clusters were the same from epoch to epoch, we found that the  
likelihood of a trial staying in the same cluster across consecutive 
epochs was rare (0.9 ± 0.01% of transitions; Supplementary Fig. 6f  
and Online Methods). The activity patterns in each cluster were 
made up of complex combinations of activity levels in the popula-
tion of individual neurons (Fig. 3j and Supplementary Fig. 7a–e). 
Some individual neurons thus had elevated activity in multiple clus-
ters (Fig. 3j and Supplementary Figs. 6g–i,7a–e). A cluster should 
therefore be considered as a pattern of activity across neurons, 
such that the patterns between clusters are discriminable from one 

another. The precise activity patterns that defined each cluster were 
not important for the focus of this work.

Highly variable population activity patterns on trials with 
identical cues and choices
We used the cluster space to visualize the population activity trajec-
tories on single trials. This visualization revealed a high amount of 
trial–trial variability, as trials with the same choice and evidence cues 
(for example, correct trials with all cues on the left, or left 6–0 trials) 
occupied more than half of all possible clusters at each epoch, even at 
the turn after a choice was made (Fig. 3c,d,i). Trials of the same type 
therefore had distinguishable trajectories of activity patterns and did 
not converge to similar paths through a small set of clusters, which 
is consistent with previous studies of variability in the activity of  
cortical neurons21,22,27–29.
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The trial–trial variability could have resulted from modulations of 
the tonic firing of a specific set of neurons or from major changes in 
which sets of neurons were active in each trial. We found evidence for 
the second possibility. We calculated the similarity between the groups 
of neurons that were active in pairs of clusters explored on a single 
trial type (for example, correct 6–0 left trials; Fig. 3j). Specifically, for 
each pair of clusters in a given epoch, we quantified the fraction of 
neurons that were active in both clusters using a threshold in z-scored 
estimated spike counts (threshold = 1.5). Surprisingly, only ~10% of 
neurons on average were active in both clusters in a pair, even when 
limiting our analysis to trials with identical choices and evidence 
cues (Fig. 3j,k). Many trials of the same type therefore had largely  

non-overlapping populations of active neurons. Consistently, the cor-
relation coefficient between the population activity patterns for pairs 
of trials of the same type at the same epoch had a wide distribution, 
with some trial pairs being highly correlated and others having cor-
relation coefficients near zero (Fig. 3l). In addition, we quantified 
the variability as a function of time in the trial using the cluster space 
defined by clustering activity patterns from all epochs together, rather 
than clustering independently within each epoch (Online Methods). 
The variability was estimated at a given epoch as the fraction of  
clusters explored by a population of trials. Surprisingly, when con-
sidering all trial types together, the fraction of clusters visited did not 
decrease over the course of the trial (Fig. 3m). The activity therefore  
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maintained a high number of distinguishable activity patterns 
throughout the trial and did not collapse to a low-variability repre-
sentation even at the turn epoch, after a choice had been made.

Population activity trajectories as orderly, seconds-long 
sequences of transitions between transient activity patterns
Given that a stereotyped sequence of activity patterns was not present 
for trials with identical cues and choices, we sought to understand the 
cause of the trial–trial variations. We generated a new cluster space 
using only trials of a single type (for example, left 6–0 trials) to remove 
the variability due to different evidence cues and choices (Fig. 4a). 
The variability in activity trajectories in this case could be due pre-
dominantly to biological or measurement noise. If so, the transitions 
from one activity pattern to the next are expected to be unpredictable, 
such that each single trial wanders through a random sequence of 
activity patterns. Alternatively, the variability between trials of the 
same type could carry information. In this case, each trial is expected 
to traverse an orderly set of activity patterns, such that the transition 
from one activity pattern to the next is predictable. We tested whether 
we could predict the future activity patterns of a trial on the basis of 
the trial’s current activity pattern. As a first test, we visualized the 
paths of trials starting from a single cluster and found that only a 
subset of subsequent clusters was visited by those trials, even many 
epochs later (Fig. 4b). This example suggests that by knowing the 
trial’s starting point, we could predict, to some extent, the clusters 
visited by that trial in the future. To visualize whether this structure 

could occur by chance, we simulated a ‘noise’ case by shuffling the  
assignment of trials to clusters at each epoch (maintaining the dis-
tribution of trials across clusters), thus creating transitions between 
clusters that mimic noise-driven transitions. In the shuffled case, the 
trials starting in a single cluster visited all subsequent clusters, in 
contrast to what we observed in the unshuffled data (Fig. 4c).

This example suggested that the transitions between activity pat-
terns could be nonrandom and that temporal structure might exist 
in the variable paths traversed by single trials of the same type. We 
quantified this structure by developing a classifier in cluster space 
that asked whether, on the basis of the identity of the cluster occupied 
by a given trial at the current epoch, we could predict the identities 
of the clusters occupied by that same trial in past and future epochs 
(Online Methods). This analysis therefore tests whether the current 
activity pattern contains information about past and future activity 
patterns within a single trial. For trials with identical choices and 
evidence cues, the classifier predicted significantly above chance 
which cluster a trial occupied 5 or 6 epochs (~4–5 s) into the past 
and future (P < 0.001; Fig. 4d,e). Extensive analyses revealed that 
the temporal structure could not be explained by trial–trial dif-
ferences in behavioral patterns, such as running patterns in the  
maze, and was not imposed by the clustering process (Supplementary 
Fig. 8a–c and Online Methods, “Contribution of behavioral variabil-
ity to neuronal activity results”). Together, these results indicate that 
the current activity pattern contained information about past activity 
patterns and influenced the transition probabilities to future activity 
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patterns, even when removing the effects of different trial events such 
as evidence cues and choice.

The long-timescale temporal structure we observed could arise 
from persistent activity patterns, in which single neurons have  
long-lasting activity across epochs. Alternatively, there may exist pre-
dictable progressions between time-varying activity patterns, such 
that the PPC has long-timescale dynamics via orderly transitions from 
one short-lived population activity pattern to another. Several features 
of the data provided support for the second alternative. We found that 
neurons were transiently active with time-varying activity (Fig. 2a,b 
and Supplementary Figs. 4 and 5a,b). Also, clusters from different 
epochs had mostly distinct activity patterns (Fig. 3h,j). Furthermore, 
transitions were just as likely between clusters with similar activity 
patterns as they were between clusters with dissimilar activity patterns 
(Fig. 4f). To further test whether the long-timescale structure emerged 
from long-lasting activity in individual neurons, we shuffled the trial 
identities separately for each neuron among trials of the same type to 
disrupt neuron–neuron correlation structure while preserving activ-
ity patterns in individual neurons (simulating a pseudo-population).  
The removal of neuron–neuron correlations eliminated our ability 
to predict the past and future clusters visited by a single trial on the 
basis of the current cluster occupied by that trial (Fig. 4e). Together 
these results indicate that the temporal structure in single trials did 
not arise from long-lasting activity in individual cells; rather, orderly 
transitions occurred between transient patterns of neuronal activity 
with largely different sets of active neurons.

Long-lasting changes in population dynamics due to previous 
task events
Thus far, our results indicate that long-timescale structure exists in 
the PPC over seconds: the activity pattern at a given moment con-
tained information about past activity patterns and also influenced 
the transition probabilities to future activity patterns. These results 
make important predictions about the timescale over which infor-
mation about transient events is maintained in the PPC. An event 
during a trial is expected to result in a new population activity pat-
tern that depends on both the features of the event and the activity  
pattern transition probabilities immediately before the event.  
The activity pattern that results is then expected to influence the tran-
sition probabilities to future activity patterns. Therefore, by helping 
to create a population activity pattern, a transient event is expected to 
have a long-lasting effect by constraining the possible future activity 

patterns, which in effect forms a short-term memory. We therefore 
hypothesized that transient events should have signatures of their 
occurrence long after they end. In this case, variability between trials 
of the same type could have emerged as a consequence of differences 
in recent past events.

To test this hypothesis, we asked whether the variability in activity 
patterns at the beginning of a trial could be explained by two promi-
nent past events: the previous trial’s choice and the previous trial’s 
reward outcome (correct or incorrect). Because we were not directly 
analyzing transitions between activity patterns, we performed our 
analyses on the population activity without clustering for simplicity 
(we obtained similar results with clustering). The population activ-
ity patterns at the start of a trial, following an inter-trial interval of 
at least 2 s, were highly different for trials that had different choices 
and reward outcomes in the previous trial28,30–33. We visualized this 
result with dimensionality reduction by factor analysis (Fig. 5a and 
Supplementary Fig. 9c) and quantified the result using an SVM clas-
sifier based on population activity (Fig. 5b,c). The previous trial’s 
choice could be decoded above chance for as long as 10 s after the 
conclusion of the previous trial, including well into the current trial 
(Fig. 5b). This signal did not have an easily detectable behavioral 
effect because a linear model with interactions could not predict the 
mouse’s choice on the current trial on the basis of the previous trial’s  
choice and reward (R2 = 0.02 ± 0.01, mean ± s.e.m., P = 0.37; Online 
Methods)34. Also, the previous trial’s choice could not be decoded 
from the current trial’s behavioral data (for example, running  
patterns; Supplementary Fig. 8d–g and Online Methods). PPC 
activity therefore contained information about events from previous  
trials many seconds after they had ended. As a result, trials with iden-
tical cues and choices had highly variable activity patterns due to  
differences in past events.

Predictions and tests for population activity dynamics during 
evidence accumulation
Although our analyses have focused in large part on comparisons 
between trials of a single type, the features identified have direct 
implications for evidence accumulation. We have shown that activ-
ity patterns in the PPC partially define the possible future activity 
patterns over seconds (Fig. 4). Events that help to establish a new 
activity pattern will therefore influence the transition probabilities to 
future activity patterns, creating a short-term memory of the event, 
as we have shown for choices and reward outcomes across trials  
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(Fig. 5). In this framework, we can consider how evidence accumula-
tion might occur. In response to an evidence cue, the network activity 
pattern would change on the basis of the cue type (left or right) and 
the set of activity pattern transition probabilities at the time of the 
cue. The response to a second cue would follow the same process 
and thus depend both on the second cue’s type and on the transi-
tion probabilities for the activity pattern resulting from the first cue. 
Because the transition probabilities at the time of the second cue 
were set in part by the first cue, the activity pattern after the second 
cue would reflect both the first and second cues. Because this process 
cascades, each unique cue sequence would result in a unique activity 
pattern, even for the same net evidence. The activity pattern after all 
six cues would therefore be influenced by the sequence of previous 
cues. A single abstract variable for net evidence, in which the same 
final net evidence converges to the same activity pattern, regardless 
of the cue sequence, is therefore not expected to be present. Rather, 
the accumulated evidence cues would be represented generically as 
a sequence of inputs emerging from the long-timescale dynamics.  

Our results lead to predictions about population activity during  
evidence accumulation tasks.

A first prediction is that the population activity pattern should 
reflect not only the net evidence but also the sequence of evidence 
cues within a trial independent of net evidence. This prediction 
implies that different sequences of cues that result in the same net evi-
dence (for example, left-right-left vs. right-left-left) should generate 
distinguishable activity patterns. To test this prediction, we selected 
trial epochs with the same current cue (for example, left) and the same 
net evidence (for example, +1 left) but with different cue types in the 
previous epoch, thus isolating effects due to the cue history. Trial 
epochs that had the same cue type in the previous epoch had signifi-
cantly higher trial–trial population activity correlations than epochs 
with different cue types in the previous epoch (P < 10−9, two-sam-
ple Kolmogorov–Smirnov test; Fig. 6a). Activity in an epoch could 
therefore be classified above chance levels on the basis of the type of 
cue in the previous epoch despite identical current cues and net evi-
dences (classification accuracy: 59.0 ± 2.2%, mean ± s.e.m.; P < 0.001,  
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permutation test with shuffled trial labels; Online Methods). While 
this difference was highly significant, it was modest in amplitude, 
suggesting that it only accounted for a small fraction of the total trial–
trial variability. The differences for distinct evidence sequences did 
not appear to reflect different internal accumulated evidence values 
due to unequal weighting of early and late cues (Online Methods, 
“Classifiers (without clustering): classification of cue sequences”). The 
population activity pattern therefore contained information about the 
sequence of past evidence cues, independent of net evidence.

Another prediction is that the signal for the sequence of past evi-
dence cues (independent of net evidence) could underlie evidence 
accumulation in the population activity. Accumulated evidence would 
therefore be represented implicitly as a sequence of cues rather than 
explicitly as a single, abstract value such as net evidence. This pre-
diction suggests that population activity with strong signals for cue 
histories should also have strong signals for evidence accumulation. 
Taking advantage of the variability across data sets, we found that 
our ability to decode the sequence of past cues, given the same net 
evidence, was strongly correlated with the decoding of net evidence 
(r = 0.84, P < 0.001; Fig. 6b). This result indicates that the cue-driven 
modifications to activity pattern transition probabilities leading to 
a cue history signal might also serve as a mechanism underlying  
evidence accumulation.

A final prediction is that if the current activity pattern influences 
the transition probabilities to future activity patterns, then both the 
current activity pattern and the type of evidence cue should influence 
the activity pattern following a new evidence cue. We compared trials 
with identical net evidence at the same epoch and asked whether we 
could predict the population activity pattern following a new evidence 
cue (either left or right cue) on the basis of (i) the distribution of 
trials across clusters alone (chance), (ii) the new cue type alone (cue 
only), (iii) the current activity cluster alone (cluster only), and (iv) 
both the current activity cluster and the new cue type (cue + cluster) 
(Online Methods). We performed this analysis in the cluster space 
to facilitate the analysis of transition probabilities between activity 
patterns. Based on the new cue’s type, there was an increase in the 
ability to predict the identity of the next epoch’s activity cluster, indi-
cating that evidence cues triggered changes in population activity  
(P < 0.001 for cues 2–6; two-sample Student’s t-test; Fig. 6c). However, 
the identity of the current activity cluster was more predictive of the 
next epoch’s activity cluster than was the new cue’s type (P < 0.001 
for all cues; two-sample Student’s t-test; Fig. 6c). Therefore, although 
new inputs influenced the future population activity pattern, the past 
population activity pattern had a larger effect, consistent with a role 
for the current activity pattern in defining the set of possible future 
activity patterns.

DISCUSSION
Our work identified two features of PPC activity that together moti-
vate a new model for how evidence accumulation is performed in 
neuronal circuits. First, we found that each event during a trial, such 
as a new evidence cue or behavioral choice, modified the dynamics of 
the PPC over a timescale of seconds (Figs. 4,5 and 6a–c). Surprisingly, 
these events did not change the tonic activity of a specific set of 
neurons; rather, each event altered the set of activity patterns that 
the population could occupy in the future and thus the transition  
probabilities between complex population activity patterns, often 
involving transitions between different sets of active neurons  
(Figs. 3h,j and 4e,f). This finding leads to a potentially generalizable 
rule in which transient inputs and activity patterns in the PPC ‘rever-
berate’ as long-lasting changes in the set of possible activity pattern 

transitions and trajectories, resulting in a short-term memory of each 
past input and activity pattern (Fig. 6d–f). This process was seem-
ingly continuous in that the PPC activity pattern never appeared to  
reset, even after a trial was finished; rather, the PPC activity main-
tained an ongoing record of recent past events, thus forming a  
continuous, gap-free short-term memory. Our findings support and 
extend previous work that showed evidence accumulation signals 
in the PPC3,4 by proposing that accumulation might occur gener-
ally by means of reverberation of network activity changes and by 
demonstrating that this accumulation could occur as long-timescale 
dynamics mediated by orderly transitions between transient and 
highly different activity patterns.

Second, we found that trials with identical evidence cues and 
choices were highly variable, such that these trials did not converge to 
a single, low-variance activity pattern, but were instead represented by 
widely varying patterns of population activity (Fig. 3). The diversity 
of activity patterns emerged because the PPC had information about 
many signals, including past events such as previous choices, reward 
outcomes, and evidence cues. Variability can therefore be considered, 
in part, as signals for unmeasured or hidden parameters, beyond those 
parameters directly tested in an experiment (for example, choice or 
net evidence)19,20. The presence of hidden signals affects our inter-
pretation of neuronal activity in that it may be inaccurate to consider 
activity in layer 2/3 of PPC as specific for a set of measured task 
parameters and to think of the representation of those parameters  
as a small set of noisy network activity patterns. For example, the 
neuron–neuron activity correlation structure remaining after the  
subtraction of activity resulting from a selected subset of task vari-
ables, typically referred to as ‘noise correlations’, may reflect, in some 
cases, ‘residual correlations’ due to additional signals in the PPC. 
Together, our results therefore combine and put into a new context 
features identified in previous studies, including heterogeneous activ-
ity patterns across neurons5,17,18,20, distributed representations of 
task stimuli including for irrelevant inputs19,20, activity-dependent 
processing of stimuli35,36, and the encoding of previous stimuli that 
indicates stimulus reverberation30–33,37–43.

Our findings are inconsistent with key features of winner-take-
all models2,9,10. First, traditional winner-take-all models predict 
that on different trials with the same choice the population activity 
converges to the same, low-variance pattern (attractor, which could 
potentially take multiple possible forms, such as a point in activity 
state space or a trajectory), which is predicted to erase the history of 
previous events. In contrast, we found that the same trial types (and 
choices) did not converge to a single pattern but instead consisted 
of highly different activity patterns (Fig. 3). In addition, through-
out a trial, history signals were present for many events, including 
the sequence of previous cues and outcomes from previous trials 
(Figs. 5 and 6a). Second, published models propose that neurons 
have homogeneous and long-lasting activity patterns. Instead, con-
sistent with our previous results8, we found that neurons in the PPC 
were highly heterogeneous, with transient and time-varying activity 
(Fig. 2a and Supplementary Figs. 4 and 5a,b). Finally, most imple-
mentations of winner-take-all competitions involve mutual inhi-
bition between competing pools of neurons that should result in 
negative population activity correlations between trials with different 
choices. Instead, we observed a correlation coefficient close to zero 
for such trial pairs (r = –0.01 ± 0.003, mean ± s.e.m. across data sets). 
Although our results are inconsistent with current implementations 
of winner-take-all dynamics, they could be consistent with emerg-
ing models in which a winner-take-all circuit is embedded within a 
network with history-dependent dynamics44 or in which activity in a  
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winner-take-all circuit is drawn toward, but never converges to, 
dynamically changing attractors.

We propose a potentially generalizable rule for PPC dynamics 
in which inputs that trigger a change in activity have a long-lasting 
effect on future activity patterns owing to the long-timescale dynam-
ics of changes in transition probabilities (Fig. 6d–f). In the case of 
evidence accumulation, the evidence cues would not be privileged 
over other inputs; rather, evidence cues, like all other inputs, would 
help generate new activity patterns and thus new transition prob-
abilities to future activity patterns. With multiple evidence cues offset 
in time, the changes in the transition probabilities would cascade 
such that the activity pattern following a sequence of cues would in 
part be defined by, and thus contain information about, the precise 
order of cues. Different sequences of cues would therefore result in 
unique activity patterns, as we have shown (Fig. 6a). As a result, the 
same net evidence, choice, and likely decision variable would not 
converge to the same activity pattern from trial to trial, but rather 
would form a diverse set of activity patterns. We predict that before 
learning of a task these activity patterns would not be associated with 
one another. Rather, through learning, the weights of connections 
onto a downstream readout network could be modified to establish a 
decision plane for choice or a manifold for net evidence. The readout 
network would therefore be able to associate the initially arbitrary 
sets of activity patterns with a task-specific meaning and behavioral 
output, as has been demonstrated in computational models26,45,46 
(Fig. 6d). The low-dimensional projection in the readout network 
could be consistent with previous recordings of ramping activity 
during evidence accumulation tasks3,4,11,47. Our model argues that 
the PPC has the general role of a reverberator of its inputs owing to 
intrinsic long-timescale dynamics and that evidence accumulation 
can be considered as a sequence of cues that establish a cue-sequence-
dependent activity pattern. Evidence accumulation would thus occur 
as a specific example of a general dynamics feature. This new model 
is consistent with the theoretical framework developed in reservoir 
computing45,48,49.

Our proposed algorithm offers advantages over a winner-take-all 
competition. In a winner-take-all competition, evidence accumulation  
would occur through an explicit, abstract signal for accumulated  
evidence. Such a signal is typically implemented in a highly special-
ized network architecture that is fine-tuned for a specific type of 
input, such as visual cues during virtual navigation in our case9,10. 
In contrast, our proposed model would allow the same network to 
flexibly scale for decision-making with multiple alternatives and to 
perform computations relevant to many diverse and novel tasks. This 
flexibility could be achieved through plasticity in readout weights, 
rather than through the construction of a new circuit architecture for 
each task19,46,48,50. We consider this advantage important for the PPC, 
which contains many signals in the same population of neurons and 
thus likely contributes to many learned behaviors in parallel.

METHODS
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.

AcknowledgmenTS
We thank S. Chettih and M. Minderer for developing the cell selection software; 
M. Andermann, J. Assad, W. Maass, O. Mazor, S. Panzeri, and A. Trott for 
discussions; and B. Datta, D. Dombeck, J. Drugowitsch, C. Gu, and members of the 

Harvey laboratory for comments on the manuscript. We also thank the Research 
Instrumentation Core at Harvard Medical School. This work was supported by 
a Burroughs-Wellcome Fund Career Award at the Scientific Interface, the Searle 
Scholars Program, the New York Stem Cell Foundation, the Alfred P. Sloan 
Research Foundation, a NARSAD Brain and Behavior Research Young Investigator 
Award, NIH grants from the NIMH BRAINS program (R01MH107620) and 
NINDS (R01NS089521), and a Stuart H.Q. & Victoria Quan Fellowship (A.S.M.). 
C.D.H. is a New York Stem Cell Foundation Robertson Neuroscience Investigator. 
Portions of this research were conducted on the Orchestra High Performance 
Compute Cluster at Harvard Medical School (supported by grant NCRR 
1S10RR028832-01).

AUTHoR conTRIBUTIonS
A.S.M. and C.D.H. conceived of the project, designed the experiments and 
analyses, and wrote the paper. A.S.M. collected and analyzed the data. 

comPeTIng FInAncIAl InTeReSTS
The authors declare no competing financial interests.

Reprints and permissions information is available online at http://www.nature.com/
reprints/index.html.

1. Gold, J.I. & Shadlen, M.N. The neural basis of decision making. Annu. Rev. 
Neurosci. 30, 535–574 (2007).

2. Wang, X.-J. Neural dynamics and circuit mechanisms of decision-making.  
Curr. Opin. Neurobiol. 22, 1039–1046 (2012).

3. Shadlen, M.N. & Newsome, W.T. Neural basis of a perceptual decision in the parietal 
cortex (area LIP) of the rhesus monkey. J. Neurophysiol. 86, 1916–1936 (2001).

4. Hanks, T.D. et al. Distinct relationships of parietal and prefrontal cortices to 
evidence accumulation. Nature 520, 220–223 (2015).

5. Raposo, D., Kaufman, M.T. & Churchland, A.K. A category-free neural population 
supports evolving demands during decision-making. Nat. Neurosci. 17, 1784–1792 
(2014).

6. Licata, A.M. et al. Posterior parietal cortex guides visual decisions in rats. Preprint 
at bioRxiv http://dx.doi.org/10.1101/066639 (2016).

7. Goard, M.J., Pho, G.N., Woodson, J. & Sur, M. Distinct roles of visual, parietal, 
and frontal motor cortices in memory-guided sensorimotor decisions. Elife 5, 471 
(2016).

8. Harvey, C.D., Coen, P. & Tank, D.W. Choice-specific sequences in parietal cortex 
during a virtual-navigation decision task. Nature 484, 62–68 (2012).

9. Wong, K.-F. & Wang, X.-J. A recurrent network mechanism of time integration in 
perceptual decisions. J. Neurosci. 26, 1314–1328 (2006).

10. Machens, C.K., Romo, R. & Brody, C.D. Flexible control of mutual inhibition: a 
neural model of two-interval discrimination. Science 307, 1121–1124 (2005).

11. Horwitz, G.D. & Newsome, W.T. Separate signals for target selection and movement 
specification in the superior colliculus. Science 284, 1158–1161 (1999).

12. Fujisawa, S., Amarasingham, A., Harrison, M.T. & Buzsáki, G. Behavior-dependent 
short-term assembly dynamics in the medial prefrontal cortex. Nat. Neurosci. 11, 
823–833 (2008).

13. Baeg, E.H. et al. Dynamics of population code for working memory in the prefrontal 
cortex. Neuron 40, 177–188 (2003).

14. Crowe, D.A., Averbeck, B.B. & Chafee, M.V. Rapid sequences of population activity 
patterns dynamically encode task-critical spatial information in parietal cortex.  
J. Neurosci. 30, 11640–11653 (2010).

15. Rajan, K., Harvey, C.D. & Tank, D.W. Recurrent network models of sequence 
generation and memory. Neuron 90, 128–142 (2016).

16. Vogelstein, J.T. et al. Fast nonnegative deconvolution for spike train inference from 
population calcium imaging. J. Neurophysiol. 104, 3691–3704 (2010).

17. Meister, M.L.R., Hennig, J.A. & Huk, A.C. Signal multiplexing and single-neuron 
computations in lateral intraparietal area during decision-making. J. Neurosci. 33, 
2254–2267 (2013).

18. Jun, J.K. et al. Heterogenous population coding of a short-term memory and decision 
task. J. Neurosci. 30, 916–929 (2010).

19. Mante, V., Sussillo, D., Shenoy, K.V. & Newsome, W.T. Context-dependent computation 
by recurrent dynamics in prefrontal cortex. Nature 503, 78–84 (2013).

20. Rigotti, M. et al. The importance of mixed selectivity in complex cognitive tasks. 
Nature 497, 585–590 (2013).

21. Maimon, G. & Assad, J.A. Beyond Poisson: increased spike-time regularity across 
primate parietal cortex. Neuron 62, 426–440 (2009).

22. Churchland, M.M. et al. Stimulus onset quenches neural variability: a widespread 
cortical phenomenon. Nat. Neurosci. 13, 369–378 (2010).

23. Frey, B.J. & Dueck, D. Clustering by passing messages between data points. Science 
315, 972–976 (2007).

24. Churchland, M.M. et al. Neural population dynamics during reaching. Nature 487, 
51–56 (2012).

25. Mazor, O. & Laurent, G. Transient dynamics versus fixed points in odor representations 
by locust antennal lobe projection neurons. Neuron 48, 661–673 (2005).

26. Briggman, K.L., Abarbanel, H.D. & Kristan, W.B. Jr. Optical imaging of neuronal 
populations during decision-making. Science 307, 896–901 (2005).

27. Renart, A. & Machens, C.K. Variability in neural activity and behavior. Curr. Opin. 
Neurobiol. 25, 211–220 (2014).

http://dx.doi.org/10.1038/nn.4403
http://dx.doi.org/10.1038/nn.4403
http://dx.doi.org/10.1038/nn.4403
http://www.nature.com/reprints/index.html
http://www.nature.com/reprints/index.html
http://dx.doi.org/10.1101/066639


©
20

16
N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

�0  advance online publication nature neurOSCIenCe

a r t I C l e S

28. Marcos, E. et al. Neural variability in premotor cortex is modulated by trial history 
and predicts behavioral performance. Neuron 78, 249–255 (2013).

29. Churchland, A.K. et al. Variance as a signature of neural computations during 
decision making. Neuron 69, 818–831 (2011).

30. Bernacchia, A., Seo, H., Lee, D. & Wang, X.-J. A reservoir of time constants for 
memory traces in cortical neurons. Nat. Neurosci. 14, 366–372 (2011).

31. Donahue, C.H. & Lee, D. Dynamic routing of task-relevant signals for decision 
making in dorsolateral prefrontal cortex. Nat. Neurosci. 18, 295–301 (2015).

32. Seo, H., Barraclough, D.J. & Lee, D. Dynamic signals related to choices and 
outcomes in the dorsolateral prefrontal cortex. Cereb. Cortex 17 (Suppl. 1),  
i110–i117 (2007).

33. Seo, H. & Lee, D. Temporal filtering of reward signals in the dorsal anterior cingulate 
cortex during a mixed-strategy game. J. Neurosci. 27, 8366–8377 (2007).

34. Busse, L. et al. The detection of visual contrast in the behaving mouse. J. Neurosci. 
31, 11351–11361 (2011).

35. Safaai, H., Neves, R., Eschenko, O., Logothetis, N.K. & Panzeri, S. Modeling the 
effect of locus coeruleus firing on cortical state dynamics and single-trial sensory 
processing. Proc. Natl. Acad. Sci. USA 112, 12834–12839 (2015).

36. Curto, C., Sakata, S., Marguet, S., Itskov, V. & Harris, K.D. A simple model of 
cortical dynamics explains variability and state dependence of sensory responses 
in urethane-anesthetized auditory cortex. J. Neurosci. 29, 10600–10612 
(2009).
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ONLINE METHODS
Subjects. Experimental procedures were approved by the Harvard Medical School 
Institutional Animal Care and Use Committee. Data were acquired from five male 
C57BL/6J mice (Jackson Labs), age 8–10 weeks at the start of behavioral training 
and 14–22 weeks during imaging. Mice were housed as pairs in cages in a room 
with a reverse light/dark cycle. Mice had no previous history of any other experi-
ments. A titanium headplate was affixed to the mouse’s skull using dental cement 
(Metabond, Parkell). Mice were placed on a water schedule in which they received 
800 µl of water each day. Each mouse’s weight was measured daily to ensure that 
it was ≥80% of the mouse’s pre-water-restriction weight.

Behavior. Virtual reality system. We used a modified version of the virtual reality 
(VR) system described previously51. Images were back-projected onto a half- 
cylindrical screen (24-inch diameter) using a PicoP microprojector (MicroVision). 
Spherical treadmill movement was recorded using an optical sensor positioned 
beneath the ball. Forward/backward translation in VR was controlled by changes 
in pitch, and rotation in VR was controlled by changes in roll (both relative to the 
mouse’s body). The recorded behavioral parameters were the mouse’s position 
and view angle in the virtual environment along with the rotational velocity of the 
spherical treadmill. Virtual environments were made using ViRMEn52.

Task description (Fig. 1 and Supplementary Fig. 1). While running down 
the stem of the T with predominantly gray walls, mice encountered six visual 
cues (white wall segments with black dots) at fixed locations. Each cue could 
appear on either the left or right wall, and only one cue was visible at a time.  
Cue visibility was determined by the mouse’s position such that the duration of 
each cue was determined by the mouse’s running speed. On average, each cue was 
visible for ~0.8 s. To receive a reward, mice had to determine whether more cues 
were presented on the left or the right and, after a short stretch of maze without 
additional cues (90 cm, ~1 s), turn at the T-intersection toward the direction that 
had more cues. Task difficulty was modulated by varying the difference between 
the number of left and right cues (net evidence; 6 total cues per trial, ranging 
from 0 to 6 presented on the left and the remainder on the right). The sequence 
of cues was determined randomly for each trial of a given net evidence. On 3–3 
trials, the rewarded location was selected randomly. Following the completion 
of the trial, the screen changed to black for the duration of the inter-trial interval 
(2 s for correct choice and 4 s for incorrect choice).

Behavioral training procedure (Supplementary Fig. 1). Behavioral sessions 
lasted 45–60 min. Mice received liquid rewards through a lick spout (4 µl/reward, 
10% sweetened condensed milk). Mice were trained to perform the evidence 
accumulation task over a series of eight mazes (Supplementary Fig. 1). We imple-
mented bias correction throughout training. Bias correction was not used during 
imaging sessions. On each trial, we determined a probability that a trial would 
be a right choice trial as the fraction of left choices over the previous 20 trials.  
To maintain a high level of performance throughout the session, we introduced a 
small fraction of easy trials (‘crutch trials’) interleaved with the evidence accumu-
lation trials. Crutch trials were identical to trials from maze 5 (Supplementary 
Fig. 1) in which no evidence accumulation or delay were present. The probability 
of a crutch trial on a given trial was equal to the fraction of error trials over the 
previous 20 trials. Crutch trials were used during imaging sessions and were 
excluded from all analyses.

Behavioral analyses. Behavioral performance was calculated as the fraction of 
trials in which the mouse performed the correct choice, excluding crutch trials.

Behavioral analysis of evidence accumulation (Supplementary Fig. 2). To test 
whether mice used more than one piece of evidence per trial, we fit the behav-
ioral performance as a function of number of left cues with a logistic function 
(assuming more than one piece of evidence used per trial) and a linear function 
(assuming a single piece of evidence used per trial). To compare model fits, for 
each mouse, each behavioral day was fit separately by each model, and the distri-
bution of root mean squared errors was compared with a two-sample Student’s 
t-test. Across mice, the logistic function fit the data significantly better than the 
linear function (Supplementary Fig. 2b,c), indicating that mice used more than 
one piece of evidence per trial.

To test which cues mice used across trials, we used multivariate linear regres-
sion, with the behavioral choice as the response variable and the cue identities 
as the explanatory variables. To include large numbers of trials, multiple con-
secutive sessions (mean: 9, range: 7–12) were combined. All cues had significant 
regression coefficients with a preference toward earlier segments, suggesting that 

mice accumulated evidence with a primacy bias (Supplementary Fig. 2d–f).  
This unequal weighting of cues was not present in all mice.

Analysis of across-trial behavioral effects. To test whether there was a relation-
ship between the mouse’s choice on a trial and the outcome of the previous trial, 
we used a multivariate logistic regression with interactions with the previous 
trial’s choice and reward as binary explanatory variables and the mouse’s choice 
on the test trial as the response variable. We combined multiple consecutive  
sessions (mean: 9, range: 7–12) to include large numbers of trials. This model was 
unable to predict the mouse’s choice, suggesting that there was no easily detect-
able behavioral relationship between the mouse’s choice and the outcome of the 
previous trial (R2: 0.02 ± 0.01, mean ± s.e.m. across data sets, P = 0.37).

Contribution of behavioral variability to neuronal activity results. We performed 
multiple analyses to test the possibility that our results were due to contribu-
tions from behavioral parameters such as changes in the visual scene or running  
patterns, rather than features such as evidence accumulation or variability in inter-
nally driven neuronal population activity. In all cases, we found that behavioral 
variability could not entirely explain the neuronal activity patterns we observed.

One possibility is that the mouse began to turn left or right as it saw evidence 
cues such that accumulation of evidence was performed through the mouse’s 
viewing angle in the maze (for example, left of center viewing for more accumu-
lated left cues) rather than through an internal representation of net evidence. 
In such a case, net evidence could be correlated with different heading directions 
(view angle in the maze), motor signals (turning on the treadmill), and direct 
visual input (combination of view angle and position in the maze). However, 
when we limited our analysis to only trials with similar view angles (±2.5 degrees), 
the SVR analysis based on population activity predicted above chance levels the 
actual net evidence (Supplementary Fig. 5e,f). Additionally, when we trained 
SVR models on behavioral parameters alone (view angle, maze position, two axes 
of treadmill rotational velocity in a single model) or on behavioral parameters 
in addition to neuronal population activity, models trained on both behavioral 
parameters and neuronal population activity consistently predicted the net evi-
dence better than those trained on behavioral parameters alone, despite modest 
predictability from behavioral parameters alone (comparison of models with 
different numbers of parameters was made possible by the use of non-overlapping 
training and testing sets; Supplementary Fig. 5g,h). These results suggest that 
a representation of net evidence was present independent of heading direction, 
running patterns, and direct visual input.

Another possibility is that trial–trial differences in behavioral parameters 
could have generated the structured trial–trial variability in neuronal activity 
and the presence of history signals across long timescales. We ruled out these 
possibilities using a series of tests to see whether neuronal activity explained 
additional variability beyond what could be explained by the behavioral vari-
ability, by building both neuronal activity and behavioral features into a single 
logistic regression model. We found that the current behavioral parameters alone 
explained above chance, but poorly, past and future activity pattern clusters for 
only ~1 epoch into the past or future (Supplementary Fig. 8a–c). In contrast, 
models using the current behavioral parameters and the current activity pat-
tern cluster (or the current activity pattern alone) predicted the past and future 
epochs substantially better, including across a longer timescale of 5 or 6 epochs 
(determined by adjusted R2 to compare models with different numbers of param-
eters; Supplementary Fig. 8a–c). Consistently, using behavioral parameters for 
visual scene and running patterns, we were unable to classify above chance levels  
history signals from the previous trial in the subsequent trial (Supplementary 
Fig. 8d–g). Together these results indicate that the trial–trial variability and his-
tory signals we observed included neuronal signals that could not be explained 
by major behavioral variability.

Imaging. Surgical procedure. When mice performed well on maze 7 
(Supplementary Fig. 1a), they underwent a surgery to implant a cranial win-
dow. For 3 d before surgery, mice were given 5 mL of water per day. A circular 
craniotomy (3.1 mm diameter) was made over left PPC (2 mm posterior, 1.75 
mm lateral of bregma). A virus mixture containing a 4:1 volumetric ratio of tdTo-
mato (AAV2/1-CAG-tdTomato) to GCaMP6 (AAV2/1-synapsin-1-GCaMP6f 
or AAV2/1-synapsin-1-GCaMP6m) was delivered by three injections of ~20 nL 
(~5 min/injection, ~150 µm spacing between injections). Viruses were obtained 
from the University of Pennsylvania Vector Core Facility. Injections were made 
near the center of the craniotomy, ~275 µm below the dura, using a beveled 
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glass pipette (~15 µm tip diameter) and a custom air pressure injection system.  
The pipette was advanced using a micromanipulator (Sutter MP285) at a  
30-degree angle to minimize compression of the brain. A window with glass 
plug (5 mm diameter coverslip plus two 3 mm diameter coverslips; #1 thickness; 
CS-3R and CS-5R, Warner Instruments) was made using UV-curable, optically 
transparent adhesive (Norland Optics). The window was affixed to the brain 
using a drop of Kwik-Sil (World Precision Instruments) and affixed to the skull 
using Metabond mixed with ~5% vol/vol India ink to prevent light leakage.  
A headplate was affixed to the skull using Metabond mixed with India ink.  
A titanium ring was mounted on top of the headplate to interface with a cylinder 
of black rubber to surround the microscope’s objective lens, thus preventing light 
leak from the VR display into the microscope53. Imaging began at least 4 weeks 
after injection and was continued for up to 12 weeks. Fields of view containing 
cells with GCaMP6 in the nucleus were excluded. In a given session, we imaged 
~350 neurons simultaneously during ~300 trials (range, 188–648 neurons; range, 
231–414 trials; n = 5 mice; Supplementary Table 1).

Two-photon microscope design. Imaging was performed using a custom-built 
two-photon microscope. The microscope scan head included a resonant scan-
ning mirror and a galvanometric mirror separated by a scan lens–based relay 
telescope. Fluorescence light collection optics were based on a custom design 
to collect wide dispersion angles from objectives with a large (~20 mm) back 
aperture. The microscope was stationary, and the mouse was mounted on an 
xyz translation stage (Dover Motion). Green and red emission light were sepa-
rated by a dichroic mirror (580 nm long-pass, Semrock) and bandpass filters 
(525/50 and 641/75 nm, Semrock) and collected by GaAsP photomultiplier tubes 
(Hamamatsu). Excitation light was delivered from a Ti:sapphire laser (Coherent) 
operated at 920 nm. The microscope was controlled by ScanImage (version 5; 
Vidrio Technologies)54.

Imaging data acquisition. Imaging data were acquired at ~30 Hz at a resolu-
tion of 512 × 512 pixels (~700 µm × ~700 µm field of view) using a Nikon 16×, 
0.8 NA objective lens. Imaging and behavioral data were synchronized using 
custom-written MATLAB software by simultaneously recording the frame clock 
from ScanImage and an iteration counter from ViRMEn (Online Methods).  
Up to 100,000 frames were acquired from each imaging session over the course 
of ~1 h. Imaging data were acquired at depths between 100 and 200 µm below 
the dura. Data were analyzed from 11 fields of view from 5 mice.

Preprocessing of imaging data. Motion correction, the definition of putative 
cell bodies, and extraction of fluorescence traces (∆F/F) were performed in a 
semi-automatic fashion using custom-written software. In brief, following motion 
correction55, the correlation of fluorescence time series was calculated for each 
pair of pixels within ~60 µm of one another. Fluorescence sources (putative cells) 
were then identified by applying a continuous-valued, eigenvector-based approxi-
mation of the normalized cuts objective56 to the correlation matrix, followed by 
discrete segmentation by k-means clustering, yielding binary masks for all identi-
fiable fluorescence sources. For each putative cell, the local neuropil fluorescence 
was estimated by averaging across nearby pixels devoid of fluorescence sources. 
The scale of neuropil contamination of the cell fluorescence was estimated by 
regressing the background time series against low-activity regions of the cell 
time series, and the scaled background time series was then subtracted from the 
cell time series. Cell selection and neuropil subtraction were performed using 
a tool that allowed manual examination of clustering results and parameters, in 
combination with anatomical information and fluorescence traces corresponding 
to each cluster. All neuropil contamination fits were also examined by eye and 
adjusted when necessary. All fluorescence traces were deconvolved to estimate the 
probability of a spike in each frame (estimated spike count)16. Similar results were 
obtained from the non-deconvolved ∆F/F traces (Supplementary Fig. 10).

data analysis. General analysis procedures. Data were grouped into spatial bins 
(3.75 cm/bin). The T-maze was linearized before binning by folding the arms 
such that they were a continuation of the stem. Neuronal activity and behavioral 
parameters were averaged in each bin (2 or 3 imaging frames per bin per trial). 
Unless otherwise noted, all analyses were performed on both correct and error 
trials together. All correlation coefficients were from Pearson’s correlations.

Classifiers (without clustering): general procedures. Unless otherwise noted, all 
population classifiers were support vector machines (SVMs) with a radial basis 
function (Gaussian) kernel57,58 implemented using the libsvm library (version 
3.20)59. All population classification was performed on the concatenated activity  

of all individual neurons. Data were divided into non-overlapping training/
validation and test sets (50% of trials each). To prevent overfitting, models were 
trained exclusively on the training/validation set, with the test set left untouched 
until final testing. Hyperparameter (C and γ; regularization weight and radial 
basis function width, respectively) selection was performed using a random 
search method with tenfold cross-validation on the training/validation set of 
only a single data set, and the same hyperparameters were used for all data sets.

Classifiers (without clustering): two-class classifications (Fig. 2c,e,g and 
Supplementary Figs. 5c,j,8d–g and 10a,d,e). For two-class classification prob-
lems, such as the classification of the choice (Fig. 2c,e,g and Supplementary 
Fig. 5c), previous trial’s choice (Fig. 5b), and previous trial’s reward outcome 
(Fig. 5c), a C-support vector classification (C-SVC) approach was used. For the 
single neuron choice classifier, neuronal activity was averaged across each left 
6–0 and right 0–6 trial (Fig. 2c). For population classifiers, independent SVMs 
were trained on each spatial bin (Fig. 2e,g and Supplementary Figs. 5c,9d–g 
and 10a,d,e). In cases where classification accuracy based on neuronal data was 
compared with accuracy based on behavioral data (Supplementary Fig. 8d–g), 
hyperparameters were optimized separately for each. In cases where the weights 
placed on individual neurons were analyzed (Supplementary Fig. 5j), a linear 
kernel was used to allow for interpretability of the weights.

Classifiers (without clustering): net evidence support vector regression (Fig. 2d,f,h 
and Supplementary Figs. 5e–h and 10b). For the prediction of net evidence 
on the basis of neuronal population activity (Fig. 2d,f,h and Supplementary  
Fig. 5e–h), an ε-support vector regression (ε-SVR) approach was used57,58,60.  
For the net evidence models, the average activity during the third quarter of each 
cue’s presentation (~200 ms) was calculated for each neuron. For training and 
testing, each cue was treated as a separate trial with class labels corresponding to 
the net evidence including that cue. Trials were divided into training and testing 
sets as whole trials to prevent similar activity on different cues within the same 
trial from corrupting the results. To determine prediction accuracy, the predicted 
net evidence was compared to the actual net evidence via a correlation coefficient. 
To calculate statistical significance, the results were compared to the distribution 
resulting from 1,000 shuffles of class labels. To rule out categorization, which 
would result in identical guesses within left and right net evidence conditions 
but a positive slope across all net evidence conditions, we calculated significance 
separately within left and right net evidence conditions; both were statistically 
significant across mice for the population classifiers (P < 0.001; Fig. 2f).

Classifiers (without clustering): classifiers built by adding-in subsets of neurons 
(Fig. 2g,h and Supplementary Fig. 5i). Classifiers were built similarly to the 
population classifiers described above, except with the input being a subset of 
neurons. The single neuron choice SVM and SVR net evidence correlation were 
used to determine single neuron selectivity for choice and net evidence, respec-
tively. Neurons were sorted in ascending order on the basis of their selectivity. 
A separate classifier was trained for increasingly larger populations of neurons 
with neurons added in from least to most selective.

The classifier’s accuracy increased as neurons with low individual classification 
accuracy were incorporated (Fig. 2g,h). Using the least selective 40% of neurons, 
the classifier for choice reached an overall accuracy of ~75%, even though the 
most selective neuron included only reached an individual accuracy of 52.5%. 
While this result may appear counterintuitive at first, there are several ways in 
which it can occur. For example, consider a neuron that is active on only 10 
out of 200 trials. However, all 10 of the trials during which the neuron is active 
result in a left choice. The neuron’s individual classification accuracy will neces-
sarily be low: the best it can achieve is 52.5% (chance performance on the 190 
trials during which it is silent and perfect performance on the 10 trials dur-
ing which it is active). However, a population classifier combining many such 
neurons, each active on a different subset of 10 trials, may still achieve a high  
accuracy overall.

As another example, consider a neuron that is active on all trials with 10% 
higher activity on left trials than on right trials. In a noiseless environment, 
such a neuron would result in perfect classification accuracy. However, as noise 
increases, the neuron’s classification accuracy will quickly fall, and if the noise is 
much larger than the difference in average activity between left and right trials, 
the neuron will display poor individual accuracy. Nevertheless, if a population 
classifier averages the responses of many such neurons (assuming independent 
noise), its accuracy will increase steadily as more neurons are included (and as 
more noise is averaged out), eventually reaching perfect classification accuracy.
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We tested whether our classifier’s performance was due to weak information 
in single cells or correlations between neurons by shuffling the trial identities 
within a trial-type category separately for each neuron, thus preserving each 
neuron’s activity but breaking inter-neuronal correlations (i.e., simulating a 
pseudo-population). In the shuffled case, the classifier performed with high 
accuracy, indicating that many cells beyond the highly selective ones contained 
small amounts of choice- and net evidence-related information (Supplementary 
Fig. 5i). Importantly, these analyses indicate that our classifier was not depend-
ent on correlations but they do not rule out the possibility that population-level 
correlations may play a key role in information encoding.

Classifiers (without clustering): classification of cue sequences (Fig. 6a,b and 
Supplementary Figs. 5d and 10g,h). To determine whether the identity of 
previous cues could be read out at a current epoch, given identical current cue 
and net evidence (Fig. 6a,b and Supplementary Fig. 5d), we examined pair-
wise trial–trial population activity correlations. At each of cues 3–6, we sepa-
rated trials into those that contained the patterns LRL (left-right-left) and RLL 
(right-left-left) or LRR and RLR with the last cue in the pattern matching the  
currently analyzed cue. For example, at the third cue, the pattern LRLRRR would 
be a match, while at fifth cue, the pattern RRLRLR would be a match. To rule 
out predictability due to differences in net evidence, a subset of trials in which 
the distribution of net evidence was equivalent across the two groups was used.  
This procedure resulted in 8 groups (2 choices × 4 patterns). At each cue epoch, 
pairwise trial–trial correlations of the mean neuronal population activity vector 
for n simultaneously imaged neurons were calculated for trials with the same 
previous cue or different previous cues. To predict the previous cue on the basis 
of these correlations, in a leave-one-out fashion, the mean population activity 
correlations between the test trial and all other trials with a left or right previous 
cue were calculated. Accuracy was compared to the accuracies from 1,000 shuffles 
of the labels assigning previous cues to trials.

The activity difference due to different previous cues could reflect differ-
ent internal accumulated evidence values owing to unequal weighting of early 
and late cues. However, similar results were obtained when we restricted our 
analysis to the fifth and sixth cues, which were weighted similarly behaviorally  
(P = 0.03), and when we considered data from a mouse that weighted all  
cues equally (Supplementary Fig. 2d, see mouse marked in red; for both cases,  
P < 1.4 × 10–4, comparison of pairwise activity correlations for trials with  
the same or different previous cue, two-sample Kolmogorov–Smirnov test; 
Supplementary Fig. 5d).

Visualization of activity in high-dimensional state space via factor analysis  
(Fig. 5a and Supplementary Fig. 9). For visualizations using factor analysis  
(Fig. 5a and Supplementary Fig. 8), dimensionality was reduced to 5-factors 
and two were selected for visualization.

Clustering methods (Figs. 3,4 and 6c and Supplementary Figs. 6,7,9a–c and 
10c,f). We used clustering to reduce the dimensionality of the population activ-
ity without inclusion of information about behavioral parameters and without 
encouraging projection of the data onto dimensions that maximize variance due 
to specific task features, such as choice. We used clustering because it did not 
assume linearity in the data structure and facilitated analyses by discretizing activ-
ity patterns, allowing the calculation of transition probabilities between discrete 
activity states. However, clusters were not considered an indication of discreteness 
of the underlying activity patterns. Clustering provided the advantage of allowing 
analysis of the rules that govern the transitions between activity patterns from 
moment to moment within a trial. Although other analysis approaches may have 
been possible, standard methods have not to our knowledge been developed 
previously to study the rules governing transitions between transient and largely 
different patterns of population activity, as we observed here.

Preprocessing for clustering. Prior to clustering, each spatially binned trial was 
divided into ten non-overlapping epochs, corresponding to the start of the trial, 
cues 1–6, the early and late delay, and the turn. For the trial-start epoch, neuronal 
activity was averaged over the four spatial bins (15 cm) immediately preceding 
onset of the first cue. For cues 1–6, activity was averaged over the third quarter of 
each cue’s presentation (four spatial bins). For the early and late delay, respectively, 
activity was averaged across the four spatial bins beginning 15 and 37.5 cm after 
offset of the final cue. For the turn, activity was averaged across the final four 
spatial bins in the maze. Each epoch corresponded to approximately 200 ms.

Clustering via affinity propagation. Within each epoch, trials were clustered 
into groups on the basis of their neuronal activity using affinity propagation (code 

from B. Frey, University of Toronto)23. Affinity propagation has two inputs: a 
distance matrix and a ‘preference’ for each data point. We calculated the distance 
as the negative sum of pairwise Euclidean distance and one minus the pairwise 
cosine similarity between every trial in the n-dimensional activity space (each 
dimension being the activity of a single neuron). In contrast to other clustering 
methodologies, such as k-means clustering, the preference parameter does not 
specify the number of clusters, but rather a general range. For example, in our 
experience, clustering on different data sets using the same preference param-
eter can result in anywhere from 1 to 30 clusters. To determine the preference 
parameter, we calculated the number of clusters generated across a range of 
preference parameter values. The tenth percentile of the difference matrix was 
within a stable range, such that small modifications in the preference parameter 
did not greatly influence the number of clusters identified. The choice of this 
parameter and the resulting number of clusters had little impact on our results 
(Supplementary Fig. 6j).

Transition probabilities between clusters (Figs. 3 and 4). To calculate transi-
tion probabilities between clusters (cluster a at epoch 1, cluster b at epoch 2), 
we calculated the fraction of trials in cluster a which were also in cluster b. To 
superimpose behavioral variables on clusters (Figs. 3a–d and 4a–c), for each 
cluster, we calculated the fraction of trials that had a given feature. To validate that 
the clustering found meaningful groups, we analyzed whether the distribution 
of behavioral variables across clusters at a given epoch was significantly differ-
ent than chance. To calculate chance, we shuffled the cluster labels such that the 
number of trials in each cluster was maintained, but with the trials assigned to 
a given cluster determined randomly (Supplementary Fig. 6a–d). Significance 
was established by summing the absolute difference in behavioral variables from 
the expected uniform distribution for the real data and comparing this total 
difference to the distribution of the same metric obtained from 1,000 shuffles 
(Supplementary Fig. 6b,d).

Clustering based on all time points together, rather than epoch-by-epoch  
clustering (Fig. 3m and Supplementary Fig. 6f). To determine whether cluster-
ing separately at each epoch resulted in multiple clusters with similar population 
activity patterns in different epochs, we also performed clustering on all epochs 
together. While the total number of clusters for epoch-by-epoch-based clustering 
was larger than those for all-epoch-based clustering (ratio: 1.6 ± 0.06), the ratio 
was relatively low, suggesting that activity patterns were distinguishable across 
epochs. Self-transitions were identified as transitions across epochs in the all-
epoch clustering in which a trial was in the same cluster at two consecutive epochs 
(Supplementary Fig. 6f). To determine whether the variability of trials in cluster 
space changed over the course of a trial, we also calculated the fraction of the total 
clusters explored at each maze epoch (Fig. 3m). To remove outliers, only clusters 
containing three or more trials at a given epoch were counted as visited.

Classifiers based on activity in cluster space: classification of the cluster identity 
at past and future epochs on the basis of the cluster identity at the current epoch 
(Figs. 4d,e and 6c and Supplementary Figs. 6j and 10c). To predict the past or 
future cluster identity during a trial at a certain epoch (epoch j), given the cluster 
identity at another epoch (epoch i), we implemented a classifier built in cluster 
space (Fig. 4d,e). In a leave-one-out fashion, we limited our analysis to only 
the trials that were in the same cluster as the test trial at epoch i. Of those trials, 
we then asked which cluster was most common at epoch j. The classifier then 
predicted that the test trial would also be in that cluster at epoch j. Prediction 
accuracy was calculated as the fraction of predicted clusters that matched the 
actual cluster. In Figure 4d,e, clustering was performed separately on correct left 
6–0 and right 0–6 trials to rule out structured variability due to different cues or 
behavioral choices. Accuracy was compared to 1,000 shuffles of the assignment 
of trials to clusters. Cluster assignments were shuffled independently at each 
epoch. This shuffle maintains the distribution of trials across clusters. This clas-
sifier was identical to the “cluster only” classifier used for Figure 6c, except that in 
Figure 6c it was applied to all trials together, independently of evidence or choice.  
The other classifiers used in Figure 6c followed a similar logic. For the “chance” 
classifier, the same procedure was followed, except all trials except for the test 
trial were used to determine the most likely cluster at epoch j, not just those in 
the same cluster at epoch i. For the “cue only” classifier, only those trials with the 
same current cue (left or right) were used to determine the most likely cluster at 
epoch j. For the “cue + cluster” classifier, only those trials that both had the same 
current cue as the test trial and were in the same cluster at epoch i were used to 
determine the most likely cluster at epoch j.
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Classifiers based on activity in cluster space: classification of past and future clus-
ter identities with simulated pseudo-populations (Fig. 4e). The temporal structure 
we observed could be caused by the prolonged activity of individual neurons, 
either owing to persistent activity in the underlying neuronal activation or to 
the prolonged decay kinetics of the calcium indicator. To test whether prolonged 
activity patterns could account for temporally structured and predictable trial–
trial variability, we shuffled the trial labels independently for each neuron across 
trials with the same choice and sequence of evidence cues (for example, correct 
left 6–0 trials; Fig. 4e). This shuffle therefore breaks neuron–neuron correla-
tion structure but maintains the temporal structure of each neuron’s individual 
activity, simulating a pseudo-population. Following this shuffle, clustering was 
performed (separately for correct 6–0 left and 0–6 right trials), and past and future 
activity patterns were classified as described above using the “population activ-
ity only” classifier. In contrast to the unshuffled case, we were unable to predict 
past and future activity patterns over more than one epoch (Fig. 4e), suggesting 
that the predictability we observed in the real data could not be explained by 
prolonged activity or slow indicator kinetics.

Classifiers based on activity in cluster space: classification of past and 
future cluster identities on the basis of behavioral data (Supplementary  
Fig. 8a–c). To determine the fraction of past and future predictability 
accounted for by variability in behavioral parameters across clusters, we 
used logistic regression to compare predictability based only on behavio-
ral parameters to that based on both behavioral parameters and neuron 
activity-defined clusters (Supplementary Fig. 8a–c). To allow binary clas-
sification, only trials whose cluster identity contained either the most or 
second most trials during the prediction epoch were included. We used all 
recorded behavioral parameters (x/y position, spherical treadmill rotational 
velocities, view angle) for this analysis, which together account for the 
mouse’s general running pattern and visual scene. At each epoch, we trained 
a logistic regression model to predict the activity pattern at the current 
epoch or at another epoch in the past or the future on the basis of either 
the behavioral variables alone (behavior only) or the behavioral variables 
in addition to the current cluster identity (behavior + neuronal activity 
clusters). Note that for the same epoch, we did not include neuronal clusters 
as an explanatory variable as they were identical to the response variable in 
that case. To compare model performance across the two cases, which have 
different numbers of predictors, we used adjusted R2. Independent models 
were created for each combination of epochs and combined on the basis of 
the number of epochs separating the predictor and response (for example, 
cue 1 and cue 2 are separated by 1 epoch, while trial start and turn epochs 
were separated by 9 epochs). Separate models were calculated for left 6–0 
and right 0–6 trials to rule out behavioral variability induced by the choice. 
Results were qualitatively similar when models included linear interaction 
terms and quadratic terms.

Analysis of the overlap of active neurons across clusters (Fig. 3k). To calculate 
the overlap fraction for active neurons between clusters, each neuron’s activity 
across all trials was z-scored. Within each cluster, each neuron’s mean z-scored 
activity was calculated and compared to a z-score activity threshold of 1.5  
(Fig. 3k), though similar results were obtained using different thresholds. Neurons 
whose mean z-scored activity was above this threshold were determined to be 
active. Using correct left 6–0 and right 0–6 trials separately to rule out differences 
due to evidence cues, the pairwise overlap fraction between all clusters at each 
epoch was calculated as 

overlapindex 
number of neurons active in both clusters
number of n

=
eeurons activein either cluster

For the intra-cluster measure, trials within a cluster were randomly divided into 
two groups, the mean activity within each group was calculated for each neuron, 
this mean activity was compared to the z-score threshold, and the overlap frac-
tion between the two groups was calculated. This process was repeated 100 times 
and the results were averaged. To reduce variability due to low trial numbers, 
only clusters (intra-cluster measure) or cluster pairs (inter-cluster measure) with 
greater than 20 combined trials were included. To determine the shuffled overlap 
fraction, the cell labels within each cluster were randomly assigned 1,000 times, 
and the inter-cluster overlap fraction was recalculated.

data and code availability. The data and code that support the findings of this 
study are available from the corresponding author upon reasonable request.

A Supplementary methods checklist is available.
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Supplementary Figure 1 

Behavioral training. 

a, Mazes used for behavioral training. Asterisks indicate reward location. Only some example mazes are shown (for example, right 
choice and not left choice maze in maze 1). b, Distribution of net evidence corresponding to different difficulties used in training the final 
task (maze 8; see d). c, Screen captures of the virtual environment at cue 1, cue 6, and the turn in maze 8. d, Behavioral performance 
across sessions for three example mice. Colors correspond to the maze colors indicated in a. Shapes correspond to the net evidence 
probabilities in b. 
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Supplementary Figure 2 

Behavioral analysis of evidence accumulation. 

a, Behavioral performance on each of the 11 imaging sessions, fit with a logistic function. b, Example performance from a single mouse 
across seven behavioral sessions fit by a linear (green) and logistic (purple) model (Methods). c, Across mice, the logistic model fit the 
data significantly better than the linear model (p < 0.05 for all mice, two-sample Student’s t-test), suggesting that mice used more than 

one piece of evidence per trial to make a choice. Error bars represent mean  s.e.m. across datasets. Mice are colored the same as in 
Fig. 1c. d, Multivariate linear regression in which the mouse’s choice was the response variable and the six cue identities were separate 
explanatory variables. Regression coefficients for five mice (7-12 sessions each) are shown. Four of the five mice weighted early cues 
more than late cues. Error bars indicate confidence intervals. e-f, Fraction of correct (black) and error (gray) trials containing a minority 
cue (a cue indicating the incorrect choice) at each cue position, for a single mouse (e) and as the difference of the error and correct 
points (f) for five mice. g, Relationship between net evidence and view angle for each mouse combined across all cue positions. 
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Supplementary Figure 3 

Example imaging field of view and activity traces. 

a, Example histology image of GCaMP6m-expressing neurons in the PPC. b, Example two-photon image of GCaMP6m-expressing 
neurons in layer 2/3 of the PPC. c, Example ∆F/F traces (black) and deconvolved estimated spike counts (green) (Methods). 
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Supplementary Figure 4 

Mean population activity patterns in PPC for all cells and selective cells. 

a, Normalized mean activity across correct left 6-0 (left) and correct right 0-6 (right) trials for all neurons pooled across all datasets (n = 
3840 cells from 11 datasets, 5 mice). Traces were normalized to the peak of each cell’s activity on either correct left 6-0 (top) or correct 
right 0-6 (bottom) trials, averaged, and sorted by the peak’s maze position. b, Same as in a, except for on preferred (top) or non-
preferred (bottom) correct 6-0 trials. Cells were sorted according to each cell’s activity in its preferred condition. Preferred trial type was 
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determined for each cell individually based on which trial type had higher mean activity. c-d, Same as a-b, but only for selective cells. 
Selective cells were defined as all cells with choice classification accuracy above 70%. 
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Supplementary Figure 5 
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Analyses of single-neuron- and population-level representations of task-relevant features. 

a-b, Histogram of the fraction of the entire trial (a) and cue period (cues 1-6) (b) neurons were active (n = 3840 neurons from 5 mice). c, 

SVM classification accuracy (mean  s.e.m., n = 11 datasets) for choice based on population activity on correct and error trials. 
Independent classifiers were trained and tested at each maze position. d, Same as Fig. 6a except for a mouse with equal cue 
weightings. Cumulative distribution of the pairwise trial-trial population activity correlation coefficients for epochs with the same (black) 
or different (green) previous cues, keeping net evidence and epoch constant (e.g. LRLXXX vs. RLLXXX trials at cue 3) (p < 1.4 x 10

-4
, 

two-sample KS test, n = 2 datasets; mouse colored as red in Fig. 1c, Supplementary Fig. 2b, d). This analysis tested if neuronal activity 
at a given epoch contained information about the previous epoch’s cue, independent of maze epoch and net evidence. e-f, SVR 

classifiers for net evidence performed on trials with nearly identical (2.5) view angles on left choice (e) and right choice (f) trials. g, 
Actual net evidence vs. net evidence predicted by an SVR classifier trained on behavioral parameters only (gray) or both behavioral 

parameters and neuronal population activity (black) (Methods). Error bars represent mean  s.e.m. across datasets (n = 11). Across 
mice the predicted vs. actual net evidence correlation coefficient was significantly higher for the model with behavioral parameters and 
neuronal activity than for the model with behavioral parameters only (p < 0.001 relative to shuffled net evidence labels). Net evidence 
therefore appeared decodable beyond information provided by view angle. h, Data from (g) shown for individual datasets. Green 
crosses represent means across datasets (n = 11; p = 3.7 x 10

-5
, two-sample Student’s t-test). i, Peak classifier accuracy for choice for 

classifiers constructed with increasing numbers of neurons, added from least to most selective (based on histograms from Fig. 2c). 
Real data are shown in black and a simulated pseudo-population is shown in green. To create the pseudo-population, trial identities 
were shuffled (within a trial-type category) independently for each neuron to break neuron-neuron correlation structure but to preserve 

each neuron’s activity within the trial (Methods). Shaded error bars represent mean  s.e.m. across datasets, and max individual 
neuron classification accuracies/correlations were the mean across datasets. j, Individual neurons’ choice classification accuracy as a 
function of the magnitude of the weight placed on each neuron by a linear SVM choice classifier trained on all neurons. The population 
classifier reached a peak accuracy of 100%. While neurons with higher individual classification accuracy were weighted more strongly, 
the SVM still weighted some neurons with low individual accuracy. Single trial activity on left 6-0 and right 0-6 trials for two example 
neurons with relatively high weight are also shown. These two neurons illustrate two ways that neurons with low individual selectivity 
can contribute to a population code. The left neuron (green) is active on both trial types with high variability, but slightly more so on right 
trials. The right neuron (purple) is primarily active on left trials, but is only active on a small subset of trials (see Methods). Top panels: 

each row is an individual trial. Bottom panels: mean  s.e.m. For each net evidence condition (e.g. 2L), the mean spike count was 
calculated by combining the activity at all cue epochs matching the given net evidence. 
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Supplementary Figure 6 

Characterization of behavioral and neuronal patterns across clusters. 

a, Fraction of trials in each cluster in the turn epoch that were left choice trials for an example dataset. Clustering revealed neuronal 
activity patterns related to behavioral choices. Gray area indicates the median and 99% confidence intervals of the shuffled distribution 
of trial assignments to clusters. b, Comparison of the total difference from a uniform distribution for the real data (circles) to the 99% 
confidence intervals of the corresponding shuffle for each dataset (lines). The total difference was calculated as the summed absolute 
difference from the shuffle median across clusters. c-d, Same as in a-b, but for net evidence during the fifth cue. e, Distribution of trials 
per cluster across all epochs and datasets (n = 2457 clusters). f, Cluster self-transition probabilities for clustering performed using all 
epochs together. Transition probabilities were considered from one epoch to the next epoch. Low self-transition probabilities suggested 

that activity patterns changed over the time of consecutive epochs. Error bars represent mean  s.e.m across datasets. g, Cumulative 
distribution of the number of neurons active in each cluster for different z-score activity thresholds. h, Cumulative distribution of the 
number of maze epochs in which a neuron was active in at least one cluster for different z-score activity thresholds. i, Cumulative 
distribution of the number of clusters in which a neuron was active within a single epoch for different z-score activity thresholds. j, For a 
given trial based on the current cluster identity, the accuracy of predicting the clusters occupied by that trial in the past and future 
epochs did not depend greatly on the clustering preference parameters (percentile of the distance matrix used for clustering; 1

st
, 10

th
, 

30
th

, 50
th

, 70
th

 from left to right) and, hence, numbers of clusters. Cluster numbers are the mean number of clusters for each preference 

parameter across datasets. Error bars represent mean  s.e.m. across datasets. 
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Supplementary Figure 7 

Visualizations of neuronal activity across clusters. 

a-e, Mean z-scored spike count for individual neurons across clusters comprised only of correct left 6-0 trials at two adjacent epochs 
(Cues 4 and 5) from a single dataset. These plots demonstrate that the activity across clusters and epochs featured largely different 
patterns of active neurons. Neurons were either unsorted (a) or sorted according to their activity in clusters 1, 3, 7, or 9 (b-e). Neurons 
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whose mean z-scored activity was less than 0.001 in all of the displayed clusters were excluded for display purposes (these neurons 
were active during a different trial epoch). Clusters were generated from correct left 6-0 trials. f-h, Left panels: Matrix of population 
activity correlations between each pair of cluster centers sorted according to the cluster’s left choice probability at three different maze 
epochs. For each cluster, the population activity was calculated as the mean activity vector across trials for each cluster. Right panels: 
Population activity correlation between each pair of clusters as a function of their difference in left choice probability. i-k, Same as in f-
h, but for net evidence. 
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Supplementary Figure 8 

Contribution of behavioral variability to trial–trial variability and classification of the previous trial’s outcome. 

a-c, Our ability to predict the past and future population activity pattern based on the current population activity pattern could not be 
explained by behavioral variability. We performed a multivariate logistic regression to predict a trial’s cluster identity at a given epoch 
based on only the behavioral parameters at another epoch (gray) or both the behavioral parameters and the cluster identity at another 
epoch (black). To allow for a binary classifier, we only included those trials whose cluster identity contained either the most or second 
most trials during the prediction epoch (Methods). Consistently, the model based on both behavioral parameters and the previous 
cluster identity outperformed the model based on only behavioral parameters. This analysis was performed on left 6-0 trials (b) and 
right 0-6 trials (c) separately, and pooled together for all 6-0 trials (a). The behavioral parameters used were x/y position, x/y treadmill 
velocity, and view angle. Separate models were fit for each combination of previous and future cluster identities and combined based 
on the number of maze epochs between them (∆maze epochs). Adjusted R

2
 values were used to compare the predictive power of 

models with different numbers of explanatory variables. *P < 0.05, **P < 0.01, ***P < 0.001, two-sample Student’s t-test. d, Comparison 
of a neuronal activity-based SVM (black), behavioral parameter-based SVM (green), and the 99% confidence interval of a neuronal 
activity-based SVM with shuffled labels (gray) for the previous trial’s choice for a single dataset. The behavioral parameter-based SVM 
could not discriminate the previous trial’s choice. Classifiers were trained to distinguish the mouse’s choice on the previous trial 
independently at each bin in the current trial. e, Difference between the classification accuracy of the neuronal activity-based SVM and 

the behavioral parameter-based SVM for the previous trial’s choice. Error bars represent mean  s.e.m. across datasets. f-g, Same as 
in (d-e), but with classifiers for whether or not the previous trial was rewarded. 
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Supplementary Figure 9 

Visualizations of trial trajectories. 

a-c, Trajectories of correct trials colored by the current trial type (a), the current trial’s choice (b), and the previous trial’s choice (c). 
Trials with the same choice but different trial types were highly overlapping (a), while trials with different choices were highly different 
(b). Much of the variance within a choice could be explained by the outcome of the previous trial (c). Green and black circles mark the 
trial start and trial end, respectively. For visualization purposes, the dimensionality of the data was reduced using factor analysis. 
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Supplementary Figure 10 

Main results reanalyzed using ∆F/F values. 

a, Classification accuracy for choice as a function of maze position (SVM, radial basis function kernel). Independent classifiers were 

trained and tested at each maze position. Error bars represent mean  s.e.m. across datasets. Compare to Fig. 2e. b, Actual net 

evidence vs. net evidence predicted by a SVR classifier. Error bars represent mean  s.e.m. across datasets. Compare to Fig. 2f. c, For 
a given trial based on the current epoch’s cluster identity, the accuracy of predicting the clusters occupied by that trial in the past and 

future epochs, compared to shuffled assignments of trials to clusters. Error bars represent mean  s.e.m. across datasets. Compare to 
Fig. 4e. d-e, Classification accuracy as in (a), but for previous trial’s choice and for whether the previous trial was rewarded (e). 
Compare to Fig. 5b-c. f, Cumulative distribution of the pairwise trial-trial population activity correlation coefficients for trials with the 
same (black) or different (green) previous cues given the same maze epoch and same net evidence (p < 4 x 10

-7
, two-sample KS test). 

Compare to Fig. 6a. g, Relationship between classification accuracy of the previous cue and the classification accuracy of net evidence 
across datasets (r = 0.76, p < 0.001). Compare to Fig. 6b. 
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Supplementary Table 1 

Summary of datasets analyzed. 
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